3.2 \(\int (d+e x)^3 (a+b \tanh ^{-1}(c x)) \, dx\)

Optimal. Leaf size=125 \[ \frac {(d+e x)^4 \left (a+b \tanh ^{-1}(c x)\right )}{4 e}-\frac {b (c d-e)^4 \log (c x+1)}{8 c^4 e}+\frac {b (c d+e)^4 \log (1-c x)}{8 c^4 e}+\frac {b e x \left (6 c^2 d^2+e^2\right )}{4 c^3}+\frac {b d e^2 x^2}{2 c}+\frac {b e^3 x^3}{12 c} \]

[Out]

1/4*b*e*(6*c^2*d^2+e^2)*x/c^3+1/2*b*d*e^2*x^2/c+1/12*b*e^3*x^3/c+1/4*(e*x+d)^4*(a+b*arctanh(c*x))/e+1/8*b*(c*d
+e)^4*ln(-c*x+1)/c^4/e-1/8*b*(c*d-e)^4*ln(c*x+1)/c^4/e

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {5926, 702, 633, 31} \[ \frac {(d+e x)^4 \left (a+b \tanh ^{-1}(c x)\right )}{4 e}+\frac {b e x \left (6 c^2 d^2+e^2\right )}{4 c^3}-\frac {b (c d-e)^4 \log (c x+1)}{8 c^4 e}+\frac {b (c d+e)^4 \log (1-c x)}{8 c^4 e}+\frac {b d e^2 x^2}{2 c}+\frac {b e^3 x^3}{12 c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^3*(a + b*ArcTanh[c*x]),x]

[Out]

(b*e*(6*c^2*d^2 + e^2)*x)/(4*c^3) + (b*d*e^2*x^2)/(2*c) + (b*e^3*x^3)/(12*c) + ((d + e*x)^4*(a + b*ArcTanh[c*x
]))/(4*e) + (b*(c*d + e)^4*Log[1 - c*x])/(8*c^4*e) - (b*(c*d - e)^4*Log[1 + c*x])/(8*c^4*e)

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 633

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Rt[-(a*c), 2]}, Dist[e/2 + (c*d)/(2*q),
Int[1/(-q + c*x), x], x] + Dist[e/2 - (c*d)/(2*q), Int[1/(q + c*x), x], x]] /; FreeQ[{a, c, d, e}, x] && NiceS
qrtQ[-(a*c)]

Rule 702

Int[((d_) + (e_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[(d + e*x)^m, a + c*x^2,
x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[m, 1] && (NeQ[d, 0] || GtQ[m, 2])

Rule 5926

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[((d + e*x)^(q + 1)*(a + b
*ArcTanh[c*x]))/(e*(q + 1)), x] - Dist[(b*c)/(e*(q + 1)), Int[(d + e*x)^(q + 1)/(1 - c^2*x^2), x], x] /; FreeQ
[{a, b, c, d, e, q}, x] && NeQ[q, -1]

Rubi steps

\begin {align*} \int (d+e x)^3 \left (a+b \tanh ^{-1}(c x)\right ) \, dx &=\frac {(d+e x)^4 \left (a+b \tanh ^{-1}(c x)\right )}{4 e}-\frac {(b c) \int \frac {(d+e x)^4}{1-c^2 x^2} \, dx}{4 e}\\ &=\frac {(d+e x)^4 \left (a+b \tanh ^{-1}(c x)\right )}{4 e}-\frac {(b c) \int \left (-\frac {e^2 \left (6 c^2 d^2+e^2\right )}{c^4}-\frac {4 d e^3 x}{c^2}-\frac {e^4 x^2}{c^2}+\frac {c^4 d^4+6 c^2 d^2 e^2+e^4+4 c^2 d e \left (c^2 d^2+e^2\right ) x}{c^4 \left (1-c^2 x^2\right )}\right ) \, dx}{4 e}\\ &=\frac {b e \left (6 c^2 d^2+e^2\right ) x}{4 c^3}+\frac {b d e^2 x^2}{2 c}+\frac {b e^3 x^3}{12 c}+\frac {(d+e x)^4 \left (a+b \tanh ^{-1}(c x)\right )}{4 e}-\frac {b \int \frac {c^4 d^4+6 c^2 d^2 e^2+e^4+4 c^2 d e \left (c^2 d^2+e^2\right ) x}{1-c^2 x^2} \, dx}{4 c^3 e}\\ &=\frac {b e \left (6 c^2 d^2+e^2\right ) x}{4 c^3}+\frac {b d e^2 x^2}{2 c}+\frac {b e^3 x^3}{12 c}+\frac {(d+e x)^4 \left (a+b \tanh ^{-1}(c x)\right )}{4 e}+\frac {\left (b (c d-e)^4\right ) \int \frac {1}{-c-c^2 x} \, dx}{8 c^2 e}-\frac {\left (b (c d+e)^4\right ) \int \frac {1}{c-c^2 x} \, dx}{8 c^2 e}\\ &=\frac {b e \left (6 c^2 d^2+e^2\right ) x}{4 c^3}+\frac {b d e^2 x^2}{2 c}+\frac {b e^3 x^3}{12 c}+\frac {(d+e x)^4 \left (a+b \tanh ^{-1}(c x)\right )}{4 e}+\frac {b (c d+e)^4 \log (1-c x)}{8 c^4 e}-\frac {b (c d-e)^4 \log (1+c x)}{8 c^4 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 205, normalized size = 1.64 \[ \frac {2 c^3 e^2 x^3 (12 a c d+b e)+12 c^3 d e x^2 (3 a c d+b e)+6 c x \left (4 a c^3 d^3+b e \left (6 c^2 d^2+e^2\right )\right )+6 a c^4 e^3 x^4+6 b c^4 x \tanh ^{-1}(c x) \left (4 d^3+6 d^2 e x+4 d e^2 x^2+e^3 x^3\right )+3 b \left (4 c^3 d^3+6 c^2 d^2 e+4 c d e^2+e^3\right ) \log (1-c x)+3 b \left (4 c^3 d^3-6 c^2 d^2 e+4 c d e^2-e^3\right ) \log (c x+1)}{24 c^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^3*(a + b*ArcTanh[c*x]),x]

[Out]

(6*c*(4*a*c^3*d^3 + b*e*(6*c^2*d^2 + e^2))*x + 12*c^3*d*e*(3*a*c*d + b*e)*x^2 + 2*c^3*e^2*(12*a*c*d + b*e)*x^3
 + 6*a*c^4*e^3*x^4 + 6*b*c^4*x*(4*d^3 + 6*d^2*e*x + 4*d*e^2*x^2 + e^3*x^3)*ArcTanh[c*x] + 3*b*(4*c^3*d^3 + 6*c
^2*d^2*e + 4*c*d*e^2 + e^3)*Log[1 - c*x] + 3*b*(4*c^3*d^3 - 6*c^2*d^2*e + 4*c*d*e^2 - e^3)*Log[1 + c*x])/(24*c
^4)

________________________________________________________________________________________

fricas [B]  time = 0.80, size = 244, normalized size = 1.95 \[ \frac {6 \, a c^{4} e^{3} x^{4} + 2 \, {\left (12 \, a c^{4} d e^{2} + b c^{3} e^{3}\right )} x^{3} + 12 \, {\left (3 \, a c^{4} d^{2} e + b c^{3} d e^{2}\right )} x^{2} + 6 \, {\left (4 \, a c^{4} d^{3} + 6 \, b c^{3} d^{2} e + b c e^{3}\right )} x + 3 \, {\left (4 \, b c^{3} d^{3} - 6 \, b c^{2} d^{2} e + 4 \, b c d e^{2} - b e^{3}\right )} \log \left (c x + 1\right ) + 3 \, {\left (4 \, b c^{3} d^{3} + 6 \, b c^{2} d^{2} e + 4 \, b c d e^{2} + b e^{3}\right )} \log \left (c x - 1\right ) + 3 \, {\left (b c^{4} e^{3} x^{4} + 4 \, b c^{4} d e^{2} x^{3} + 6 \, b c^{4} d^{2} e x^{2} + 4 \, b c^{4} d^{3} x\right )} \log \left (-\frac {c x + 1}{c x - 1}\right )}{24 \, c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a+b*arctanh(c*x)),x, algorithm="fricas")

[Out]

1/24*(6*a*c^4*e^3*x^4 + 2*(12*a*c^4*d*e^2 + b*c^3*e^3)*x^3 + 12*(3*a*c^4*d^2*e + b*c^3*d*e^2)*x^2 + 6*(4*a*c^4
*d^3 + 6*b*c^3*d^2*e + b*c*e^3)*x + 3*(4*b*c^3*d^3 - 6*b*c^2*d^2*e + 4*b*c*d*e^2 - b*e^3)*log(c*x + 1) + 3*(4*
b*c^3*d^3 + 6*b*c^2*d^2*e + 4*b*c*d*e^2 + b*e^3)*log(c*x - 1) + 3*(b*c^4*e^3*x^4 + 4*b*c^4*d*e^2*x^3 + 6*b*c^4
*d^2*e*x^2 + 4*b*c^4*d^3*x)*log(-(c*x + 1)/(c*x - 1)))/c^4

________________________________________________________________________________________

giac [B]  time = 0.19, size = 1375, normalized size = 11.00 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a+b*arctanh(c*x)),x, algorithm="giac")

[Out]

-1/3*(3*(c*x + 1)^4*b*c^3*d^3*log(-(c*x + 1)/(c*x - 1) + 1)/(c*x - 1)^4 - 12*(c*x + 1)^3*b*c^3*d^3*log(-(c*x +
 1)/(c*x - 1) + 1)/(c*x - 1)^3 + 18*(c*x + 1)^2*b*c^3*d^3*log(-(c*x + 1)/(c*x - 1) + 1)/(c*x - 1)^2 - 12*(c*x
+ 1)*b*c^3*d^3*log(-(c*x + 1)/(c*x - 1) + 1)/(c*x - 1) + 3*b*c^3*d^3*log(-(c*x + 1)/(c*x - 1) + 1) - 3*(c*x +
1)^4*b*c^3*d^3*log(-(c*x + 1)/(c*x - 1))/(c*x - 1)^4 + 9*(c*x + 1)^3*b*c^3*d^3*log(-(c*x + 1)/(c*x - 1))/(c*x
- 1)^3 - 9*(c*x + 1)^2*b*c^3*d^3*log(-(c*x + 1)/(c*x - 1))/(c*x - 1)^2 + 3*(c*x + 1)*b*c^3*d^3*log(-(c*x + 1)/
(c*x - 1))/(c*x - 1) - 6*(c*x + 1)^3*a*c^3*d^3/(c*x - 1)^3 + 18*(c*x + 1)^2*a*c^3*d^3/(c*x - 1)^2 - 18*(c*x +
1)*a*c^3*d^3/(c*x - 1) + 6*a*c^3*d^3 - 9*(c*x + 1)^3*b*c^2*d^2*e*log(-(c*x + 1)/(c*x - 1))/(c*x - 1)^3 + 18*(c
*x + 1)^2*b*c^2*d^2*e*log(-(c*x + 1)/(c*x - 1))/(c*x - 1)^2 - 9*(c*x + 1)*b*c^2*d^2*e*log(-(c*x + 1)/(c*x - 1)
)/(c*x - 1) - 18*(c*x + 1)^3*a*c^2*d^2*e/(c*x - 1)^3 + 36*(c*x + 1)^2*a*c^2*d^2*e/(c*x - 1)^2 - 18*(c*x + 1)*a
*c^2*d^2*e/(c*x - 1) - 9*(c*x + 1)^3*b*c^2*d^2*e/(c*x - 1)^3 + 27*(c*x + 1)^2*b*c^2*d^2*e/(c*x - 1)^2 - 27*(c*
x + 1)*b*c^2*d^2*e/(c*x - 1) + 9*b*c^2*d^2*e + 3*(c*x + 1)^4*b*c*d*e^2*log(-(c*x + 1)/(c*x - 1) + 1)/(c*x - 1)
^4 - 12*(c*x + 1)^3*b*c*d*e^2*log(-(c*x + 1)/(c*x - 1) + 1)/(c*x - 1)^3 + 18*(c*x + 1)^2*b*c*d*e^2*log(-(c*x +
 1)/(c*x - 1) + 1)/(c*x - 1)^2 - 12*(c*x + 1)*b*c*d*e^2*log(-(c*x + 1)/(c*x - 1) + 1)/(c*x - 1) + 3*b*c*d*e^2*
log(-(c*x + 1)/(c*x - 1) + 1) - 3*(c*x + 1)^4*b*c*d*e^2*log(-(c*x + 1)/(c*x - 1))/(c*x - 1)^4 + 3*(c*x + 1)^3*
b*c*d*e^2*log(-(c*x + 1)/(c*x - 1))/(c*x - 1)^3 - 9*(c*x + 1)^2*b*c*d*e^2*log(-(c*x + 1)/(c*x - 1))/(c*x - 1)^
2 + 9*(c*x + 1)*b*c*d*e^2*log(-(c*x + 1)/(c*x - 1))/(c*x - 1) - 18*(c*x + 1)^3*a*c*d*e^2/(c*x - 1)^3 + 18*(c*x
 + 1)^2*a*c*d*e^2/(c*x - 1)^2 - 6*(c*x + 1)*a*c*d*e^2/(c*x - 1) + 6*a*c*d*e^2 - 6*(c*x + 1)^3*b*c*d*e^2/(c*x -
 1)^3 + 12*(c*x + 1)^2*b*c*d*e^2/(c*x - 1)^2 - 6*(c*x + 1)*b*c*d*e^2/(c*x - 1) - 3*(c*x + 1)^3*b*e^3*log(-(c*x
 + 1)/(c*x - 1))/(c*x - 1)^3 - 3*(c*x + 1)*b*e^3*log(-(c*x + 1)/(c*x - 1))/(c*x - 1) - 6*(c*x + 1)^3*a*e^3/(c*
x - 1)^3 - 6*(c*x + 1)*a*e^3/(c*x - 1) - 3*(c*x + 1)^3*b*e^3/(c*x - 1)^3 + 6*(c*x + 1)^2*b*e^3/(c*x - 1)^2 - 5
*(c*x + 1)*b*e^3/(c*x - 1) + 2*b*e^3)*c/((c*x + 1)^4*c^5/(c*x - 1)^4 - 4*(c*x + 1)^3*c^5/(c*x - 1)^3 + 6*(c*x
+ 1)^2*c^5/(c*x - 1)^2 - 4*(c*x + 1)*c^5/(c*x - 1) + c^5)

________________________________________________________________________________________

maple [B]  time = 0.03, size = 308, normalized size = 2.46 \[ \frac {a \,x^{4} e^{3}}{4}+a d \,e^{2} x^{3}+\frac {3 a \,d^{2} e \,x^{2}}{2}+a x \,d^{3}+\frac {a \,d^{4}}{4 e}+\frac {b \,e^{3} \arctanh \left (c x \right ) x^{4}}{4}+b \,e^{2} \arctanh \left (c x \right ) x^{3} d +\frac {3 b e \arctanh \left (c x \right ) x^{2} d^{2}}{2}+b \arctanh \left (c x \right ) x \,d^{3}+\frac {b \arctanh \left (c x \right ) d^{4}}{4 e}+\frac {b \,e^{3} x^{3}}{12 c}+\frac {b d \,e^{2} x^{2}}{2 c}+\frac {3 b e x \,d^{2}}{2 c}+\frac {b x \,e^{3}}{4 c^{3}}+\frac {b \ln \left (c x -1\right ) d^{4}}{8 e}+\frac {b \ln \left (c x -1\right ) d^{3}}{2 c}+\frac {3 b e \ln \left (c x -1\right ) d^{2}}{4 c^{2}}+\frac {b \,e^{2} \ln \left (c x -1\right ) d}{2 c^{3}}+\frac {b \,e^{3} \ln \left (c x -1\right )}{8 c^{4}}-\frac {b \ln \left (c x +1\right ) d^{4}}{8 e}+\frac {b \ln \left (c x +1\right ) d^{3}}{2 c}-\frac {3 b e \ln \left (c x +1\right ) d^{2}}{4 c^{2}}+\frac {b \,e^{2} \ln \left (c x +1\right ) d}{2 c^{3}}-\frac {b \,e^{3} \ln \left (c x +1\right )}{8 c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(a+b*arctanh(c*x)),x)

[Out]

1/4*a*x^4*e^3+a*d*e^2*x^3+3/2*a*d^2*e*x^2+a*x*d^3+1/4*a/e*d^4+1/4*b*e^3*arctanh(c*x)*x^4+b*e^2*arctanh(c*x)*x^
3*d+3/2*b*e*arctanh(c*x)*x^2*d^2+b*arctanh(c*x)*x*d^3+1/4*b/e*arctanh(c*x)*d^4+1/12*b*e^3*x^3/c+1/2*b*d*e^2*x^
2/c+3/2*b/c*e*x*d^2+1/4*b/c^3*x*e^3+1/8*b/e*ln(c*x-1)*d^4+1/2/c*b*ln(c*x-1)*d^3+3/4/c^2*b*e*ln(c*x-1)*d^2+1/2/
c^3*b*e^2*ln(c*x-1)*d+1/8/c^4*b*e^3*ln(c*x-1)-1/8*b/e*ln(c*x+1)*d^4+1/2/c*b*ln(c*x+1)*d^3-3/4/c^2*b*e*ln(c*x+1
)*d^2+1/2/c^3*b*e^2*ln(c*x+1)*d-1/8/c^4*b*e^3*ln(c*x+1)

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 209, normalized size = 1.67 \[ \frac {1}{4} \, a e^{3} x^{4} + a d e^{2} x^{3} + \frac {3}{2} \, a d^{2} e x^{2} + \frac {3}{4} \, {\left (2 \, x^{2} \operatorname {artanh}\left (c x\right ) + c {\left (\frac {2 \, x}{c^{2}} - \frac {\log \left (c x + 1\right )}{c^{3}} + \frac {\log \left (c x - 1\right )}{c^{3}}\right )}\right )} b d^{2} e + \frac {1}{2} \, {\left (2 \, x^{3} \operatorname {artanh}\left (c x\right ) + c {\left (\frac {x^{2}}{c^{2}} + \frac {\log \left (c^{2} x^{2} - 1\right )}{c^{4}}\right )}\right )} b d e^{2} + \frac {1}{24} \, {\left (6 \, x^{4} \operatorname {artanh}\left (c x\right ) + c {\left (\frac {2 \, {\left (c^{2} x^{3} + 3 \, x\right )}}{c^{4}} - \frac {3 \, \log \left (c x + 1\right )}{c^{5}} + \frac {3 \, \log \left (c x - 1\right )}{c^{5}}\right )}\right )} b e^{3} + a d^{3} x + \frac {{\left (2 \, c x \operatorname {artanh}\left (c x\right ) + \log \left (-c^{2} x^{2} + 1\right )\right )} b d^{3}}{2 \, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a+b*arctanh(c*x)),x, algorithm="maxima")

[Out]

1/4*a*e^3*x^4 + a*d*e^2*x^3 + 3/2*a*d^2*e*x^2 + 3/4*(2*x^2*arctanh(c*x) + c*(2*x/c^2 - log(c*x + 1)/c^3 + log(
c*x - 1)/c^3))*b*d^2*e + 1/2*(2*x^3*arctanh(c*x) + c*(x^2/c^2 + log(c^2*x^2 - 1)/c^4))*b*d*e^2 + 1/24*(6*x^4*a
rctanh(c*x) + c*(2*(c^2*x^3 + 3*x)/c^4 - 3*log(c*x + 1)/c^5 + 3*log(c*x - 1)/c^5))*b*e^3 + a*d^3*x + 1/2*(2*c*
x*arctanh(c*x) + log(-c^2*x^2 + 1))*b*d^3/c

________________________________________________________________________________________

mupad [B]  time = 1.15, size = 197, normalized size = 1.58 \[ \frac {a\,e^3\,x^4}{4}+a\,d^3\,x+\frac {b\,d^3\,\ln \left (c^2\,x^2-1\right )}{2\,c}+\frac {b\,e^3\,x^3}{12\,c}+b\,d^3\,x\,\mathrm {atanh}\left (c\,x\right )+\frac {3\,a\,d^2\,e\,x^2}{2}+a\,d\,e^2\,x^3+\frac {b\,e^3\,x}{4\,c^3}-\frac {b\,e^3\,\mathrm {atanh}\left (c\,x\right )}{4\,c^4}+\frac {b\,e^3\,x^4\,\mathrm {atanh}\left (c\,x\right )}{4}+\frac {3\,b\,d^2\,e\,x}{2\,c}-\frac {3\,b\,d^2\,e\,\mathrm {atanh}\left (c\,x\right )}{2\,c^2}+\frac {3\,b\,d^2\,e\,x^2\,\mathrm {atanh}\left (c\,x\right )}{2}+b\,d\,e^2\,x^3\,\mathrm {atanh}\left (c\,x\right )+\frac {b\,d\,e^2\,\ln \left (c^2\,x^2-1\right )}{2\,c^3}+\frac {b\,d\,e^2\,x^2}{2\,c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atanh(c*x))*(d + e*x)^3,x)

[Out]

(a*e^3*x^4)/4 + a*d^3*x + (b*d^3*log(c^2*x^2 - 1))/(2*c) + (b*e^3*x^3)/(12*c) + b*d^3*x*atanh(c*x) + (3*a*d^2*
e*x^2)/2 + a*d*e^2*x^3 + (b*e^3*x)/(4*c^3) - (b*e^3*atanh(c*x))/(4*c^4) + (b*e^3*x^4*atanh(c*x))/4 + (3*b*d^2*
e*x)/(2*c) - (3*b*d^2*e*atanh(c*x))/(2*c^2) + (3*b*d^2*e*x^2*atanh(c*x))/2 + b*d*e^2*x^3*atanh(c*x) + (b*d*e^2
*log(c^2*x^2 - 1))/(2*c^3) + (b*d*e^2*x^2)/(2*c)

________________________________________________________________________________________

sympy [A]  time = 1.98, size = 279, normalized size = 2.23 \[ \begin {cases} a d^{3} x + \frac {3 a d^{2} e x^{2}}{2} + a d e^{2} x^{3} + \frac {a e^{3} x^{4}}{4} + b d^{3} x \operatorname {atanh}{\left (c x \right )} + \frac {3 b d^{2} e x^{2} \operatorname {atanh}{\left (c x \right )}}{2} + b d e^{2} x^{3} \operatorname {atanh}{\left (c x \right )} + \frac {b e^{3} x^{4} \operatorname {atanh}{\left (c x \right )}}{4} + \frac {b d^{3} \log {\left (x - \frac {1}{c} \right )}}{c} + \frac {b d^{3} \operatorname {atanh}{\left (c x \right )}}{c} + \frac {3 b d^{2} e x}{2 c} + \frac {b d e^{2} x^{2}}{2 c} + \frac {b e^{3} x^{3}}{12 c} - \frac {3 b d^{2} e \operatorname {atanh}{\left (c x \right )}}{2 c^{2}} + \frac {b d e^{2} \log {\left (x - \frac {1}{c} \right )}}{c^{3}} + \frac {b d e^{2} \operatorname {atanh}{\left (c x \right )}}{c^{3}} + \frac {b e^{3} x}{4 c^{3}} - \frac {b e^{3} \operatorname {atanh}{\left (c x \right )}}{4 c^{4}} & \text {for}\: c \neq 0 \\a \left (d^{3} x + \frac {3 d^{2} e x^{2}}{2} + d e^{2} x^{3} + \frac {e^{3} x^{4}}{4}\right ) & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(a+b*atanh(c*x)),x)

[Out]

Piecewise((a*d**3*x + 3*a*d**2*e*x**2/2 + a*d*e**2*x**3 + a*e**3*x**4/4 + b*d**3*x*atanh(c*x) + 3*b*d**2*e*x**
2*atanh(c*x)/2 + b*d*e**2*x**3*atanh(c*x) + b*e**3*x**4*atanh(c*x)/4 + b*d**3*log(x - 1/c)/c + b*d**3*atanh(c*
x)/c + 3*b*d**2*e*x/(2*c) + b*d*e**2*x**2/(2*c) + b*e**3*x**3/(12*c) - 3*b*d**2*e*atanh(c*x)/(2*c**2) + b*d*e*
*2*log(x - 1/c)/c**3 + b*d*e**2*atanh(c*x)/c**3 + b*e**3*x/(4*c**3) - b*e**3*atanh(c*x)/(4*c**4), Ne(c, 0)), (
a*(d**3*x + 3*d**2*e*x**2/2 + d*e**2*x**3 + e**3*x**4/4), True))

________________________________________________________________________________________